How to fix a broken motor in car

Dodane: 26-08-2016 12:01
How to fix a broken motor in car reduce smoke Fiat

Jet engines use a number of rows

Jet engine
Main article: Jet engine
Turbofan Jet Engine

Jet engines use a number of rows of fan blades to compress air which then enters a combustor where it is mixed with fuel (typically JP fuel) and then ignited. The burning of the fuel raises the temperature of the air which is then exhausted out of the engine creating thrust. A modern turbofan engine can operate at as high as 48% efficiency. 24

There are six sections to a Fan Jet engine:

Fan
Compressor
Combustor
Turbine
Mixer
Nozzle


Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine


Blower scavenged

Blower scavenged
Diagram of uniflow scavenging

Using a separate blower avoids many of the shortcomings of crankcase scavenging, at the expense of increased complexity which means a higher cost and an increase in maintenance requirement. An engine of this type uses ports or valves for intake and valves for exhaust, except opposed piston engines, which may also use ports for exhaust. The blower is usually of the Roots-type but other types have been used too. This design is commonplace in CI engines, and has been occasionally used in SI engines.

CI engines that use a blower typically use uniflow scavenging. In this design the cylinder wall contains several intake ports placed uniformly spaced along the circumference just above the position that the piston crown reaches when at BDC. An exhaust valve or several like that of 4-stroke engines is used. The final part of the intake manifold is an air sleeve which feeds the intake ports. The intake ports are placed at an horizontal angle to the cylinder wall (I.e: they are in plane of the piston crown) to give a swirl to the incoming charge to improve combustion. The largest reciprocating IC are low speed CI engines of this type; they are used for marine propulsion (see marine diesel engine) or electric power generation and achieve the highest thermal efficiencies among internal combustion engines of any kind. Some Diesel-electric locomotive engines operate on the 2-stroke cycle. The most powerful of them have a brake power of around 4.5 MW or 6,000 HP. The EMD SD90MAC class of locomotives use a 2-stroke engine. The comparable class GE AC6000CW whose prime mover has almost the same brake power uses a 4-stroke engine.

An example of this type of engine is the Wärtsilä-Sulzer RTA96-C turbocharged 2-stroke Diesel, used in large container ships. It is the most efficient and powerful internal combustion engine in the world with a thermal efficiency over 50%.9101112 For comparison, the most efficient small four-stroke engines are around 43% thermally-efficient (SAE 900648);citation needed size is an advantage for efficiency due to the increase in the ratio of volume to surface area.

See the external links for a in-cylinder combustion video in a 2-stroke, optically accessible motorcycle engine.

Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine


Hybrid cars and Environmental issues

The hybrid vehicle typically achieves greater fuel economy and lower emissions than conventional internal combustion engine vehicles (ICEVs), resulting in fewer emissions being generated. These savings are primarily achieved by three elements of a typical hybrid design:

Relying on both the engine and the electric motors for peak power needs, resulting in a smaller engine size more for average usage rather than peak power usage. A smaller engine can have less internal losses and lower weight.
Having significant battery storage capacity to store and reuse recaptured energy, especially in stop-and-go traffic typical of the city driving cycle.
Recapturing significant amounts of energy during braking that are normally wasted as heat. This regenerative braking reduces vehicle speed by converting some of its kinetic energy into electricity, depending upon the power rating of the motor/generator;
Other techniques that are not necessarily 'hybrid' features, but that are frequently found on hybrid vehicles include:

Using Atkinson cycle engines instead of Otto cycle engines for improved fuel economy.
Shutting down the engine during traffic stops or while coasting or during other idle periods.
Improving aerodynamics; (part of the reason that SUVs get such bad fuel economy is the drag on the car. A box shaped car or truck has to exert more force to move through the air causing more stress on the engine making it work harder). Improving the shape and aerodynamics of a car is a good way to help better the fuel economy and also improve vehicle handling at the same time.
Using low rolling resistance tires (tires were often made to give a quiet, smooth ride, high grip, etc., but efficiency was a lower priority). Tires cause mechanical drag, once again making the engine work harder, consuming more fuel. Hybrid cars may use special tires that are more inflated than regular tires and stiffer or by choice of carcass structure and rubber compound have lower rolling resistance while retaining acceptable grip, and so improving fuel economy whatever the power source.
Powering the a/c, power steering, and other auxiliary pumps electrically as and when needed; this reduces mechanical losses when compared with driving them continuously with traditional engine belts.
These features make a hybrid vehicle particularly efficient for city traffic where there are frequent stops, coasting and idling periods. In addition noise emissions are reduced, particularly at idling and low operating speeds, in comparison to conventional engine vehicles. For continuous high speed highway use these features are much less useful in reducing emissions.


Źródło: https://en.wikipedia.org/wiki/Hybrid_vehicle#Environmental_issues



© 2019 http://rys.radom.pl/